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Abstract. Starting from the classical example of the Hénon–Heiles integrable Hamiltonian
system, we show that it admits a slightly different formulation from the classical bi-Hamiltonian
system. We introduce the general notion of a quasi-bi-Hamiltonian system (QBHS) and study
some of its basic properties only in the case of two degrees of freedom; in particular, we give
the general form of this structure in the Nijenhuis coordinates which are constructed using the
eigenvalues of the Nijenhuis operator of the system and show how they serve to separate the
Hamilton–Jacobi equation. In the last section, we look at the problem of the semi-local existence
of such structures.

1. Introduction

From the work of Magri [12, 13], a dynamic system admitting two compatible Hamiltonian
formulations is completely integrable (under suitable conditions); i.e. the eigenvalues of the
recursion operator of the bi-Hamiltonian system form a set of pairwise Poisson-commuting
invariants. There are two kinds of difficulties; first, it is in general very difficult to give
locally an explicit second Hamiltonian structure for a given integrable Hamiltonian system
[14] even if it is theoretically always possible in the neighbourhood of a regular point of
the Hamiltonian [6]; secondly we know [5–8, 10] that the global or semi-local existence of
such structures implies very strong conditions which are rarely satisfied. In this paper, we
define a weaker notion called a quasi-bi-Hamiltonian system (QBHS) which relaxes these
two difficulties for two degrees of freedom, the only case we study. We only ask for a
Hamiltonian field to be, after multiplication by an integrating factor, a Hamiltonian for a
second compatible symplectic structure. In the following, when the two eigenvalues of the
Nijenhuis operator are functionally independent, we give the general form of the second
structure in the natural system of canonical coordinates generated by these eigenvalues (here
called Nijenhuis coordinates) which depend only on a functionA of the eigenvalues. The
Hamilton–Jacobi separability in these coordinates corresponds toA = 0. In the last section
we study the problem of the semi-local existence ofQBHS; for Hamiltonians without critical
points such structures always exist. In the case of the so-called ‘PfaffianQBHS’ where we
ask the integrating factor to have a special form, we state conditions of existence which
look like the bi-Hamiltonian one [7] but are weaker.
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2. Hénon–Heiles integrable case

Let R4 with coordinates (q1, q2, p1, p2) be a canonical sympletic structure. Consider the
Hamiltonian [9, 14, 15]:

H = 1
2(p

2
1 + p2

2 + Aq2
1 + Bq2

2)+ ε(q2
1q2 + 2q3

2) . (1)

Without loss of generality, we can takeA = B = 1. Starting from the well known second
invariant

F = − 1
8(3(q

2
1 + p2

1)+ ε(−4q2p
2
1 + 4q1p1p2 + 4q2

1q2)+ ε2(q4
1 + 4q2

1q
2
2)) (2)

one of us showed [14] that for the Poisson structure given by the following matrix (for
ε = 1):

C =


0 0 0 − 1

2q1

0 0 − 1
2q1

3
4 − q2

0 1
2q1 0 1

2p1

1
2q1 q2 − 3

4 − 1
2p1 0

 (3)

the vector fieldX = ρX0
H (whereρ2 = detC andX0

H is the Hamiltonian field) is also
Hamiltonian with HamiltonianF , i.e.X = C(·, F ). Finally, we have

X0
H = C0(·, H) = 1

ρ
C(·, F ) (4)

whereC0 denotes the standard Poisson structure associated with the canonical symplectic
form. Denote byJ the operatorCC−1

0 linking the two structures. A straightforward
calculation shows that the Nijenhuis torsion ofJ is equal to zero (which is the compatibility
condition). The eigenvaluesλ1 andλ2 of the Nijenhuis operatorJ satisfy

−λ1λ2 = 1
4q

2
1 (5a)

λ1 + λ2 = 3
4 − q2 (5b)

and are functionally independent. Moreover,C0(λ1, λ2) = 0. So, we can find a new system
of canonical coordinates (λ1, λ2, pλ1, pλ2) (that we call Nijenhuis coordinates).

To find these new canonical coordinates, we use the generating function
G(λ1, λ2, p1, p2) so that

∂G

∂pi
= −qi (6a)

∂G

∂λi
= −pλi . (6b)

Using equation (6a) we can integrate and recoverG:

G = −2
√

−λ1λ2p1 − (
3
4 − λ1 − λ2

)
p2 . (7)

After two derivations, we obtain

−pλ1 = ∂G

∂λ1
= −p1√

λ1

√
−λ2 + p2 (8a)

(with λ1 > 0 andλ2 < 0)

−pλ2 = ∂G

∂λ2
= −p1√−λ2

√
λ1 + p2 (8b)
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leading to the second part of the canonical transformation:

p1 = pλ2 − pλ1

λ2 − λ1

√
−λ1λ2 p2 = λ1pλ1 − λ2pλ2

(λ2 − λ1)
. (9)

The relations (5a), (5b) and (9) allow us to writeH and F explicitly in the Nijenhuis
coordinates:

H = 1

8(λ2 − λ1)
((16λ4

1 − 40λ3
1 + 33λ2

1 − 9λ1 − 4λ1p
2
λ1
)

−(16λ4
2 − 40λ3

2 + 33λ2
2 − 9λ2 − 4λ2p

2
λ2
)) (10)

and

F = λ1λ2

8(λ2 − λ1)
((16λ3

2 − 40λ2
2 + 33λ2 − 4p2

λ2
)− (16λ3

1 − 40λ2
1 + 33λ1 − 4p2

λ1
)) . (11)

We see thatH presents a Gantmacher form [3, 4], i.e.

H(λ1, λ2, pλ1, pλ2) = H1(λ1, pλ1)−H2(λ2, pλ2)

H3(λ1, pλ1)−H4(λ2, pλ2)
(12)

which implies Hamilton–Jacobi separability [3, 4].
We can see from this example that it is relatively easy to find a ‘quasi-bi-Hamiltonian’

formulation for the H́enon–Heiles system leading to a natural system of canonical
coordinates (Nijenhuis) in which the Hamilton–Jacobi equation separates. The following
step consists in trying to examine under what conditions this property is satisfied.

3. Definition and properties of quasi-bi-Hamiltonian systems

Definition 1. Let (M,ω0, H ) be a Hamiltonian system, i.e. (M,ω0) is a symplectic manifold
andH ∈ C∞(M,R). We say that it admits a quasi-bi-Hamiltonian structure if there exist:

(i) A symplectic formω on M compatible withω0, i.e. the endomorphisms fieldJ
defined byω0(X, Y ) = ω(JX, Y ) is a Nijenhuis operator, i.e. its Nijenhuis torsionNJ is
equal to zero where

NJ (X, Y ) = [JX, JY ] − J [JX, Y ] − J [X, JY ] + J 2[X, Y ] . (13)

(ii) A non-vanishing functionρ ∈ C∞(M,R) so that the 1-formρiX0
H
ω is closed, i.e.

the fieldρX0
H is locally Hamiltonian forω.

Given these conditions we state that the 5-tuple (M,ω0, H, ω, ρ) is a quasi-bi-
Hamiltonian system (QBHS). We callρ the integrating factor of theQBHS.

Remark. Note that the operatorJ thus defined is (as in section 2)J = CC−1
0 where

C andC0 denote the Poisson structures associated with the symplectic formsω andω0,
respectively.

Definition 2. We say that aQBHS (M,ω0, H, ω, ρ) is exact if the fieldρX0
H is (globally)

Hamiltonian forω.

Note that in this case ifF denotes a primitive ofρiXH ω we haveρX0
H = XF (where

XF denotes the Hamiltonian vector field of the HamiltonianF for ω) and so we callF a
second Hamiltonian forX0

H . We remark that

ρX0
H · F = XF · F = 0

and sinceρ 6= 0, F is a first integral forX0
H .
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Definition 3. We say that aQBHS (M,ω0, H, ω, ρ) is real decomposable if its Nijenhuis
operatorJ has the maximum number (= 1

2 dimM) of distinct real eigenvalues in each point
(such thatJ is diagonalizable).

Proposition 1 and definition.Let (R4, ω0, H, ω, ρ) be aQBHS (whereω0 is the canonical
symplectic form onR4). So it is automatically exact. Note thatF is a second Hamiltonian.
If H andF are functionally independent thenρ2/ detJ is a first integral of the fieldX0

H .
We say that theQBHS is Pfaffian if ρ = −λ1λ2 whereλ1 andλ2 denote the eigenvalues of
the Nijenhuis operatorJ of the system.

Proof. SinceH andF are functionally independent and in involution, we can find a new
system (H,F, pH , pF ) of canonical coordinates forω0. In these coordinates, we then have

X0
H = ∂

∂pH
and X0

F = ∂

∂pF
. (14)

Moreover,

JX0
F = CC−1

0 X0
F

= CC−1
0 C0 dF

= C dF

= XF

= ρX0
H .

So we obtainJX0
F = ρX0

H or J−1X0
H = 1

ρ
X0
F , i.e.

J−1 ∂

∂pH
= 1

ρ

∂

∂pF
. (15)

Since it is easier to work with forms than Poisson brackets, we prefer to look at
J−1 = C0C

−1. Indeed, if we denote

C−1 =


0 α β γ

−α 0 θ φ

−β −θ 0 ψ

−γ −φ −ψ 0

 (16)

then these coefficients correspond directly to those of the symplectic form

ω = α dH ∧ dF + β dH ∧ dpH + γ dH ∧ dpF + θ dF ∧ dpH + φ dF ∧ dpF
+ψ dpH ∧ dpF . (17)

With these notations we have

J−1 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




0 α β γ

−α 0 θ φ

−β −θ 0 ψ

−γ −φ −ψ 0

 =


β θ 0 −ψ
γ φ ψ 0
0 α β γ

−α 0 θ φ

 . (18)

Comparing (15) and (18), we obtainβ = ψ = 0 andθ = 1/ρ. So

J−1 =


0 1/ρ 0 0
γ φ 0 0
0 α 0 γ

−α 0 1/ρ φ

 (19)

leading toγ 2/ρ2 = detJ−1 = 1/ detJ or

ρ2 = γ 2 detJ . (20)
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We recover

ω = α dH ∧ dF + γ dH ∧ dpF + 1

ρ
dF ∧ dpH + φ dF ∧ dpF . (21)

Writing dω = 0, and by looking at the terms dpH ∧ dH ∧ dpF , we obtain ∂γ

∂pH
= 0, i.e.

X0
H · γ = 0. Thenγ is a first integral forX0

H . Consequently, ifλ1 and λ2 denote the
eigenvalues ofJ, ρ2/(λ1λ2)

2 is a first integral forX0
H . The particular case (called Pfaffian)

whereρ = −λ1λ2 corresponds toγ = 1.

Remark. In this calculation, we do not use the compatibility condition—if we use the
compatibility we can show thatγ = γ (H, F ).

Proposition 2 and definition.Let ω0 andω be two compatible symplectic forms onR4. Let
λ1 andλ2 be the eigenvalues of their Nijenhuis operatorJ .

(i) λ1 and λ2 are in involution for the two structures. Ifλ1 and λ2 are functionally
independent, we can complete (λ1, λ2) in a system of canonical coordinates (λ1, λ2, pλ1, pλ2)
that we call Nijenhuis coordinates.

(ii) In these coordinates, ifJ is diagonalizable, the symplectic formsω0 andω take the
following form:

ω0 = dλ1 ∧ dpλ1 + dλ2 ∧ dpλ2

ω = 1

λ1
dλ1 ∧ dpλ1 + 1

λ2
dλ2 ∧ dpλ2 + A(λ1, λ2) dλ1 ∧ dλ2 . (22)

(iii) If A = 0, and if (R4, ω0, H, ω, ρ = −λ1λ2) is a Pfaffian real decomposableQBHS

with a second HamiltonianF thenH andF present the following Gantmacher form:

H = H1(λ1, pλ1)−H2(λ2, pλ2)

λ1 − λ2
(23)

F = −λ2H1(λ1, pλ1)+ λ1H2(λ2, pλ2)

λ1 − λ2
(24)

so we have Hamilton–Jacobi separability.

Proof. We first recall the classical result about compatible structures (see [11] for example).
If ω0 and ω are two compatible symplectic structures with a diagonalizable Nijenhuis
operator, the eigenspacesEλ1 andEλ2 form ω0-orthogonal integrable distributions andλ1

(respectivelyλ2) is a first integral forEλ2 (respectivelyEλ1).
(i) It is a classical result of bi-Hamiltonian system theory which only uses the

compatibility of the two forms. Here we can recall a direct proof in this simple case:
note that iff is a first integral ofEλ1 we have∀X ∈ Eλ1, ω0(X

0
f , X) = − df (X) = 0.

Hence

X0
f ∈ E⊥

λ1
= Eλ2.

Then,{λ1, λ2}0 = −X0
λ2

· λ1 = 0 becauseX0
λ2

∈ Eλ2.
(ii) We write

ω0 = dλ1 ∧ dpλ1 + dλ2 ∧ dpλ2

and

ω = A dλ1 ∧ dλ2 + B dλ1 ∧ dpλ1 + C dλ1 ∧ dpλ2 +D dλ2 ∧ dpλ1 + E dλ2 ∧ dpλ2

+F dpλ1 ∧ dpλ2 .

We haveX0
λ1

= ∂/∂pλ1, X
0
λ2

= ∂/∂pλ2 and

−dλ1 = i∂/∂pλ1
ω0 = iJ∂/∂pλ1

ω = iλ1∂/∂pλ1
ω = −λB dλ1 − λ1D dλ2 + λ1F dpλ2
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yielding B = 1/λ1,D = F = 0. Identically, we obtain by using∂/∂pλ2

E = 1

λ1
C = F = 0.

Finally, using dω = 0, we conclude thatA = A(λ1, λ2) proving the required result (22).
(iii) Writing X0

H = 1
ρ
XF = −1

λ1λ2
XF , we obtain four relations between the partial

derivatives ofH andF in the coordinates (λ1, λ2, pλ1, pλ2). A straightforward integration
yields the required result.

4. The problem of the semi-local existence ofQBHS

We know from [5–8, 10] that the global or even the semi-local existence of a real
decomposable bi-Hamiltonian system implies very strong conditions which are rarely
satisfied. The next question is to ask if this would also be the case forQBHS. Since the
definition of QBHS being weaker than the classical one, we could expect that the conditions
would be less restrictive. Indeed, we shall see in the following that for two degrees of
freedom there is always a solution (but not necessary Pfaffian) for non-critical Hamiltonians.
For PfaffianQBHS we shall state a result which looks like the classical bi-Hamiltonian one
[7], but with a weaker condition for existence.

By ‘semi-local existence’ we mean the following (see [1, 2] for more details). If
(M,ω0, H ) is a completely integrable Hamiltonian system with compact level sets we
know from the Arnold–Liouville theorem [2] that their connected components are tori and
that each of these components admits an open neighbourhood with a symplectomorphism
from this open onU × T2 (whereU is an open set ofR2) endowed with a canonical
symplectic form such that the first integrals providing the complete integrability of the
system (particularly the Hamiltonian) depend only on the coordinates onU (the action
coordinates). The problem here is to know if it is possible to have a quasi-bi-Hamiltonian
structure for this system over the whole of such a neighbourhood of the so-called Liouville’s
torus. By the Arnold–Liouville theorem it is equivalent to studying this existence onU×T2

with coordinates(x, y, θ, φ), ω0 = dx ∧ dθ + dy ∧ dφ andH = H(x, y).

Definitions. We say that a function is basic if it is basic for the fibrationπ : U × T2 → U ,
i.e. depends only on action coordinatesx, y. A basic function is said to be non-degenerate
if its Hessian matrix has a maximum rank on a dense open set ofU .

By the Arnold–Liouville theorem, the HamiltonianH is basic. We can show that if it
is non-degenerate only the first integrals ofX0

H are basic functions.
We shall first note a remark of F J Turiel [16] as follows.

Proposition 3.If H has no critical point, there always exists a neighbourhoodV × T2(V ⊂
U) of each Liouville’s torus which admits a real decomposableQBHS.

Proof. Let ω1 = λ(x) dx ∧ dθ + µ(y) dy ∧ dφ. This form is symplectic ifλ,µ are
non-vanishing functions and the 1-form onU :

iX0
H
ω1 = λ(x)

∂H

∂x
dx + µ(y)

∂H

∂y
dy

admits a (basic) integrating factor on someV ⊂ U .

Remark.

(i) This argument is false for opens ofRn, n > 2.
(ii) This solution is not necessary Pfaffian.
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For the Pfaffian case we can now state the following result.

Proposition 4.If a Pfaffian real decomposable quasi-bi-Hamiltonian structure exists for the
Hamiltonian system (U×T2, ω0, H ) with H non-degenerate, with a basic integrating factor
then there exist local coordinates (u1, u2) on U so that the functionsx, y,H split as

x = x1(u1)+ x2(u2)

y = y1(u1)+ y2(u2)

H = H1(u1)+H2(u2)

H3(u1)+H4(u2)
.

(25)

Remark. This result looks like the bi-Hamiltonian one but the condition onH, x, y is
weaker. For example, all the Hamiltonians of the typeH(x, y) = f (x)g(y) satisfy these
conditions. In particular, the counterexampleH(x, y) = x(y2 + 1) of [6].

Proof. We write

ω = A dx ∧ dy + B dx ∧ dθ + C dx ∧ dφ +D dy ∧ dθ + E dy ∧ dφ + F dθ ∧ dφ.

Looking at the terms in dθ ∧ dφ in the equation d(ρiXH ω) = 0, we get

ρ

(
∂F

∂φ

∂H

∂y
+ ∂F

∂θ

∂H

∂x

)
= 0

i.e. (ρ 6= 0)XH · F = 0. Then, becauseH is non-degenerate,F is a basic function. Now,
if we look at the terms in dx ∧ dθ in the equation d(ρiXH ω) = 0, we obtain

ρ
∂B

∂θ

∂H

∂x
+ ρ

∂C

∂θ

∂H

∂y
= ∂ρ

∂x

∂H

∂y
+ F

∂2H

∂x∂y
.

But dω = 0 so in particular we have∂C
∂θ

= ∂B
∂φ

+ ∂F
∂x

and so using the last two equations we
obtain thatXH · B is basic. Then,

XH

(
∂B

∂θ

)
= ∂

∂θ
(XH · B) = 0

so ∂B
∂θ

is basic.
HenceB is an affine function inθ, φ with basic coefficients and thus does not depend

on θ, φ because it is a global function onU × T2. HenceB is basic. Similarly, the other
coefficients ofω are basic. But, in these conditions we obtain thatF is constant because
ω is closed. Finally, becauseρiXH ω is closed, we get that the product ofF by each of the
coefficients of the Hessian matrix ofH is zero and soF = 0 (H is non-degenerate).

In conclusion,J projects onU , and with the same arguments as in the bi-Hamiltonian
case [6, 7] we see that its projection is a diagonalizable Nijenhuis operatorJ̄ and that there
exist local coordinates (u1, u2) on R2 so that

J̄ = λ1(u1) du1 ⊗ ∂

∂u1
+ λ2(u2) du2 ⊗ ∂

∂u2
.

We still have dx B J̄−1 and dy B J̄−1 closed but the difference with the bi-Hamiltonian case
is thatρ dH B J̄−1 is closed but dH B J̄−1 is not.

The hypothesis that theQBHS is Pfaffian, i.e.ρ = −λ1λ2, gives

d

(
−λ1λ2

(
1

λ1

∂H

∂u1
du1 + 1

λ2

∂H

∂u2
du2

))
= 0
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yielding, by a straightforward calculation

∂2

∂u1∂u2
((λ2 − λ1)H) = 0

i.e.

(λ2(u2)− λ1(u1))H = H1(u1)+H2(u2)

hence the result.
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